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Abstract. The Edwards hypothesis of ergodicity of blocked configurations for gently tapped granular mate-
rials is tested for abstract models of spin systems on random graphs and spin chains with kinetic constraints.
The tapping dynamics is modeled by considering two distinct mechanisms of energy injection: thermal and
random tapping. We find that ergodicity depends upon the tapping procedure (i.e. the way the blocked
configurations are dynamically accessed): for thermal tapping ergodicity is a good approximation, while it
fails to describe the asymptotic stationary state reached by the random tapping dynamics.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 75.10.Nr Spin-glass and other random
models – 45.70.Cc Static sandpiles; granular compaction

1 Introduction

The probabilistic description of dissipative dynamical sys-
tems is a central issue of modern statistical physics. In
general, the non-equilibrium nature of the stationary state
makes a general principle analogous to the Boltzmann er-
godic hypothesis for Hamiltonian systems hard to find.
The situation may be fortunate in the case of gently
tapped granular materials, where the dynamics consists of
cycles in which the system passes from a blocked configu-
ration to another through discrete injection of mechanical
energy (a tap) followed by a zero temperature relaxation
under gravity. The observation of a reversible branch in
the curve of the asymptotic packing density versus the
tapping amplitude, suggests the existence of a stationary
regime in which the packing density depends monotoni-
cally on the vibration intensity [1]. On the other hand,
it is also known that macroscopic features of mechani-
cally stable packings (e.g. the packing density) depends
on their collective handling, i.e. the specific tapping proce-
dure as borned out by simulations [2] and experiments [3].
In this situation one can ask for the invariant dynamical
measure which describes the sampling of the blocked con-
figurations, and how it depends on the energy injection
mechanism.

The simplest hypothesis was made some times ago in
a series of papers by Edwards and co-workers where the
uniform distribution over the blocked states of given den-
sity was assumed independently of the tapping procedure,
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provided it is extensive [4,5]. This proposal is particu-
larly attractive as it leads by construction to a thermody-
namic framework analogous to that of ordinary thermal
systems. In particular, it leads to the concept of com-
pactivity, which for granular matter would play the same
role of the temperature in thermodynamic systems.

Effective temperatures also appear in the description
of glassy systems undergoing aging dynamics, which are
by their nature far away from their stationary state [6].
Their occurrence can be justified by supposing that, al-
though ergodicity does not hold at the level of a single
trajectory, trajectories corresponding to different initial
conditions and thermal histories sample finite life-time
states with asymptotically uniform measure [7]. The issue
has been investigated numerically with positive answer in
3D Lennard-Jones glasses [8]. In the aging dynamics of
a non-thermal kinetic lattice-gas like the Kob-Andersen
model [9,10], the generalised effective temperature [11],
as well as more local observables as the structure func-
tion, appears to be in agreement with the corresponding
ones computed from the Edwards measure on the blocked
states [12]. Similar results have been obtained in a realistic
model of granular media under shear [13]. Further hints in
favour of the Edwards hypothesis have been presented in
recent studies [14–19] on various kinds of spin models with
tapping dynamics. These results suggest a unified thermo-
dynamic framework to describe aging glasses and gently
tapped granular systems [20].

Despite the fascination and the strong predictive power
of a statistical mechanical construction, it is at present not
clear to what extent and generality it actually applies to
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granular and glassy systems, and what would they be the
underlying reasons. It is quite natural in that context to
look at the problem in abstract models, which while mim-
icking the tapping energy injection mechanism and sub-
sequent dissipation, are easily amenable to numerical and
analytical investigations thus allowing to test the hypothe-
sis in a fine detail. Here we study two models of one dimen-
sional kinetically constrained systems (Sect. 2), and some
spin models on diluted random graphs (Sect. 3), by con-
sidering two distinct energy injection mechanisms, which
we call thermal and random tapping. We find the uni-
form measure to be a good approximation for the thermal
tapping, with improving accuracy at decreasing tapping
intensities. While for the random tapping we observe sys-
tematic deviations from the uniform measure for all finite
tapping intensities. Moreover, in the case of kinetically
constrained systems, the validity of the approximation for
thermal tapping dynamics does not warrant its extension
to the aging regime. In the case of random graph models
we find that the validity of the uniform measure also de-
pends on whether or not there are neutral moves (single
spin flips which do not change the energy) and propose a
modified measure for the former case.

2 Kinetically constrained spin chains

The first two models we consider are a variant of the fa-
cilitated Ising spin chains first introduced by Fredrickson
and Andersen [21,22], and its asymmetric version intro-
duced by Jäckle and Eisinger [23]. These are abstract toy
models of glassy behaviour whose Hamiltonian is simply

E = −
N∑
i=1

ni , (1)

where the ni = 0, 1 are binary variables and the index i
runs over the sites of a chain of length N with periodic
boundary condition. Their dynamics is defined by the fol-
lowing kinetic constraints:

– Symmetric model (model S) A variable can flip
with a non-zero rate only if at least one of its neigh-
bouring variable is equal to zero. Specifically, the vari-
ables are randomly updated according to the transition
matrix

W(ni → 1− ni) = (1− ni+1 ni−1)
× min [1, exp(−∆E/T )] · (2)

– Asymmetric model (model A) A variable can flip
with a non-zero rate only if its left neighbouring vari-
able is equal to zero. In this case the transition ma-
trix is

W(ni → 1− ni) = (1− ni−1)
× min [1, exp(−∆E/T )] · (3)

With these rules detailed balance is satisfied and the
Markov chain associated with the dynamic evolution at

non-zero temperature is irreducible on the full configura-
tion space with the exception of the configuration with
the lowest energy (all the spins equal to one so the kinetic
constraints prohibit a dynamical evolution). Therefore the
approach to the canonic equilibrium distribution is guar-
anteed. However, after a quench at low temperature the
density of zeros become smaller and smaller and hence the
relaxation become sluggish as the kinetic constraints are
hardly satisfied. In spite of their simple equilibrium mea-
sure, the finite temperature dynamics of these models does
not seem to be exactly solvable, but several important re-
sults are known [23–28]. In particular, the characteristic
equilibration time at low-temperature diverges as τ ∼ eb/T
for the model S [24,25]; and with a super-Arrhenius law
τ ∼ ea/T

2
, for the model A [23,26,27].

One reason of special interest in these models is that
they provide a more severe test of the validity of the
Edwards hypothesis since they are characterised by the
same entropy of blocked configurations – though their re-
laxational dynamics is qualitatively different1. Moreover,
they offer the advantage that the Edwards measure can be
exactly computed and the analytic results compared with
the corresponding ones obtained from numerical simula-
tions of tapping. In the following we will be mainly in-
terested in the stationary state reached by these systems
when they are submitted to a periodic non-relaxational
perturbation that mimics two different extensive tapping
mechanisms.

2.1 Tapping dynamics

The tapping is modelled by cycles consisting in two dy-
namical steps: an “energy injection” step (called a tap
for short) followed by a zero temperature relaxation until
blocking occurs [2,29,30,14–16]. During the tapping the
spins are randomly updated according two distinct ways:

1. Thermal tapping (T) The system undergoes a
Monte-Carlo sweep at temperature T with transition
matrix specified by equation (2) or (3) depending on
the model.

2. Random tapping (R) Each variables is flipped in
parallel with probability p ∈ (0, 1

2 ], irrespective of the
kinetic constraints.

During the tapping dynamics the detailed balance is bro-
ken, and after a long enough time the system is expected
to reach a steady state regime in which the energy in-
jected into it is in average equal to that dissipated in the
zero temperature relaxation steps. We also checked that
the steady state is independent of the initial configuration
(with the exception of the lowest energy configuration for
the thermal tapping). Both tapping mechanisms coincide
in the “infinite tapping limit” where a tap consists in reini-
tialising completely the system in a random configuration.
The dynamics in this limit has been recently solved by
De Smedt et al. [31] in kinetic 1D models similar to the

1 There is actually a continuous class of dynamical models
sharing the same entropy of blocked configurations, see [28].
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Fig. 1. Energy density vs. tapping amplitude in the station-
ary state of the tapping dynamics of the model S (circle) and
model A (square). Open symbols represents the thermal tap-
ping (main figure), while solid symbols correspond to the ran-
dom tapping (inset).

ones we study here, finding results in full agreement with
ours. For an analytical approach to the thermal tapping
dynamic of the 1D Fredrickson-Andersen model see also
reference [14]. Note that the blocking condition, namely
that zeros are isolated, is obviously independent of the
tapping mechanism. However, the statistical properties of
the blocked configurations in the stationary state might
be (and actually are, as we will see) dependent on the
way they are typically accessed. The set of blocked config-
urations for the model S and A is the same, and one can
compute their number N (e) as a function of the energy
density e, through simple combinatorial arguments [28].
In the thermodynamic limit this number is exponentially
large, and the Edwards entropy, which is by definition
s(e) = 1

N logN (e), reads:

s(e) = e log
1 + 2e
e

+ (1 + e) log
−1− 2e

1 + e
, (4)

from which one gets the inverse temperature or “com-
pactivity”

β(e) ≡ ∂s

∂e
= log

(1 + 2e)2

−e(1 + e)
· (5)

We have performed extensive numerical simulations of
both models A and S with both thermal and random tap-
ping dynamics. We used spin chains of length N = 210,
215, checking finite-size effects against N = 220. The ob-
servable computed in the steady state regime were typi-
cally averaged over samples of size 106, 107. In Figure 1
we plot the energy density in the stationary state vs. the
tapping amplitude for the four possible cases we have ex-
amined. We remark that curves corresponding to the two
energy injection mechanisms are rather different. The ran-
dom tapping explores only configurations within quite a
narrow interval of energy, and the zero tapping limit of the
steady state energy seems to converge to a value higher
than the ground state, where the blocked state entropy is

still extensive (see the inset of Fig. 1). Decreasing p below
the value 0.1 does not yield substantially lower energies
but only makes longer the relaxation time to the station-
ary state. In the weak tapping regime we have explored,
10−1 ≥ p ≥ 10−5, this relaxation time goes like τrel ∼ p−1.
With the thermal tapping mechanism instead, both mod-
els A and S are able to explore a wider energy range
and they appear to reach the ground state as the tap-
ping amplitude decreases to zero. Blocked configurations
reached with random tapping are therefore less compact
of those reached with thermal tapping, leading for these
models to a non-universal (i.e. dependent on the dynam-
ical mechanism) asymptotic packing density. Also notice
that with random tapping the asymptotic energy density
of the model A at a given p is lower than the correspond-
ing one for the model S. This is easily understood as the
asymmetric constraint is stronger than the symmetric one
and hence the probability of the transition 0 → 1 in the
zero temperature relaxation step is higher in the model S
than A. For the thermal tapping instead just the opposite
happens. In this case during the energy injection step the
spins can only be flipped by respecting the kinetic con-
straints. This gives a lower number of spin-flip transitions
in the model A with the respect to S (as the latter is char-
acterised by a weaker constraint), which eventually results
in a lower asymptotic energy for the model A.

The question that naturally arises in this context is
whether models with different energy vs. tapping ampli-
tude plots but with the same set of blocked configura-
tions may also share the same tapping thermodynamics.
In order to investigate this point we measure several ob-
servables in the stationary state of tapping dynamics and
compare their value with the corresponding observable an-
alytically computed with the Edwards measure.

We first examine the probability distribution of do-
mains size. A domain of size d is defined here as a sequence
of d ones enclosed by zeros. The explicit computation re-
veals that within the uniform measure, the distribution is
exponential:

P (d) =
1 + e

−e

(
2e+ 1
e

)d−1

, d ≥ 1 . (6)

Notice that this exponential distribution corresponds to
independently “throwing” the number of zeros in a given
interval, compatibly with the blocking conditions and with
no further correlations. Any deviation from the exponen-
tial on the contrary implies correlations induced by the
dynamics, and our test can be seen as a measure of these
correlations. In Figure 2 we show the function P (d) as
obtained from the thermal tapping of the A model. We
see that while the exponential distributions works excel-
lently for long domain size, deviations are detected for
short domains as a consequence of the short-range corre-
lations created by the kinetic constraints. Similar results
are obtained for the model S and in both models, more
pronounced deviations (not shown) are found for random
tapping dynamics. In order to get a quantitative estimate
of deviations we measure the mean-squared fluctuations
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Fig. 2. Probability distribution of domain length, P (d), in the
stationary state of the thermal tapping dynamics of model A.
Tapping temperature T = 1.0, 1.3, 1.8, and 3.5. The dis-
tribution is exponential for long domain size, but deviations
(stronger the higher the tapping amplitude) from the pure ex-
ponential can be detected for short domains (see inset). Similar
results were obtained for the random tapping and for the Ising
chain with symmetric constraint (model S).

of domain length σ2
d, which in our case is given by

σ2
d =

e(1 + 2e)
1 + e

· (7)

Notice that the average domain length d,

d =
−e

1 + e
, (8)

is not a good observable since it is only determined by
the blocking condition as a function of the energy, what-
ever the domain length probability distribution. In Fig-
ure 3 we show σ−1

d vs. e for both models and both tap-
ping mechanisms. We find that the flatness assumption
over blocked configurations with fixed energy works well
for thermal tapping at low energy and does not depend
on the nature of kinetic constraints; while small but sys-
tematic deviations are found at increasing energy. For
the random tapping instead the deviations are found to
be quite large at any tapping intensity, showing that the
sampling of configurations is not ergodic with this energy
injection mechanism. One can easily check that the en-
ergy interval explored with the random tapping dynamics
corresponds to a small region around the maximum of
the entropy of blocked configurations equation (4), where
e(smax) ' −0.7236. In this region the compactivity equa-
tion (5), is very small and the Edwards hypothesis is not
expected to hold [4,12].

For comparison we have also studied the aging dy-
namics, i.e. thermal relaxation at a low temperature T
starting from a high energy random configuration. Given
the simple one-dimensional nature of the model, the sys-
tem eventually equilibrates to the canonical distribution.
However, before equilibrium is reached, the system enters
a scaling regime during which the average domain length
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Fig. 3. Inverse of the mean squared fluctuation length σ−1
d , vs.

energy density e. Circle (model S) and square (model A) rep-
resent numerical results for the stationary state of the thermal
(open symbols) and random (solid symbols) tapping dynam-
ics in the constrained Ising chains. The full line represents the
analytical result obtained from equation (7). For comparison
also shown are the numerical results for the non-stationary re-
laxational dynamics after a quench at temperature T = 0.2
(model S, upward triangle) and T = 0.25 (model A, downward
triangle).

grows as d(t) ∼ taT for the model A [27], and in a purely
diffusive way, d(t) ∼ t1/2 [26,28], in the model S. In this
regime the domain sizes probability distribution is not ex-
ponential, and although the average domain length closely
approaches equation (8) (see the second of Ref. [28]), the
inverse of the mean squared fluctuation length remains
far from the Edwards value in the whole scaling regime
for both models, except at exceedingly low energy (see,
Fig. 3).

Another aspect of the Edwards thermodynamic con-
struction concerns the behaviour of the energy fluctua-
tions. By standard thermodynamics, in the regimes well
approximated by the Edwards hypothesis, the spatial fluc-
tuations of the energy σ2

e , should follow the canonical re-
lation

σ2
e = − ∂e

∂β
, (9)

which in our case gives

σ2
e = e(1 + e)(1 + 2e) . (10)

One may wonder whether in that regime the temporal fluc-
tuations follow the same law, hinting for a canonical distri-
bution of the blocked states. We find that the energy fluc-
tuations in the stationary state of the tapping dynamics
are essentially Gaussian distributed. In Figure 4 we com-
pare the mean-squared fluctuations of energy σ2

e , with the
analytic result. We see that in the region where the uni-
form hypothesis works well, the fluctuations follow within
numerical error the law implied by the canonical statis-
tics, with improving accuracy as the tapping intensity is
decreased. Consistently with our previous results we find
that for random tapping the equation (10) is violated.
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Fig. 4. Test of the fluctuation-dissipation relation equa-
tion (9), in the stationary state of the tapping dynamics of
Ising chains with kinetic constraints. Symbols correspond to
the mean-squared energy fluctuations σ2

e vs. energy density e,
numerically obtained with the thermal (open symbol) and the
random (solid symbol) tapping dynamics for the model S (cir-
cle) and model A (square). The full line represents the analytic
result equation (10).

Small but systematic deviations at higher tapping in-
tensity can also be observed in the random tapping dy-
namics of a one dimensional Ising chain recently studied
by Dean and Lefèvre [17]. Interestingly, we have found
that the thermal tapping dynamics of this model gives
results similar to the random tapping. Hence, at vari-
ance with the kinetically constrained Ising chains, in the
Dean-Lefèvre model there is substantially no difference
between the two distinct energy injection mechanisms.

In conclusion, our results show that for thermal tap-
ping the Edwards measure is a good approximation in-
dependently of the kinetic constrains, but it cannot be
considered exact as systematic deviations appear at in-
creasing tapping intensity. Random tapping instead pre-
vents the system from reaching high compactivity states.
This results in a disagreement with Edwards measure,
showing that the flatness assumption can be very sensi-
tive to the nature of the energy injection mechanism and
its interplay with blocking condition.

3 The three-spin model on random graphs

In this section we focus on the results of random and ther-
mal tapping applied to three-spin models defined on a ran-
dom graph with fixed connectivity k. The model is defined
by the Hamiltonian

H = −
∑

l<m<n

ClmnSlSmSn (11)

where the connectivities Clmn are invariant under per-
mutation of the indices and are chosen at random with
the constraint that

∑
m<nClmn = k ∀l. The three-spin

model (albeit with fluctuating connectivities) has been

used to model granular compaction [15], since it fea-
tures states with locally minimal energies (satisfied pla-
quettes are +++,–+, and permutations of the latter),
which however may be globally incompatible with one an-
other. Under the term ‘geometric frustration’ the same
mechanism is thought to be at the heart of the slow com-
paction of granulars. The model is also attractive as the
aging evolution should obey mean field theory, where the
asymptotic validity of flat measure on Thouless-Anderson-
Palmer states is well established, and one can test whether
tapping and glassy relaxational dynamics are by some
means related [15]. However the fact that tapping is non-
thermal complicates the issue – for instance for large tap-
ping amplitudes one cannot expect a flat measure over
blocked states to hold. Consider as an extreme case ran-
dom tapping with p = 1/2, which corresponds to a series
of quenches from random initial conditions. Since the typ-
ical blocked configurations do not – in general – have the
largest basin of attraction among each other, we would not
expect the flat measure over the blocked states to hold.

Configurations are deemed blocked if hlsl ≥ 0 where
hl =

∑
m<nClmnsmsn is the local field acting on each

site. In order to check the Edwards hypothesis for such
models, the statistical mechanics of blocked configurations
of these models must be worked out. In principle, this
would involve averaging the logarithm of the number of
blocked configurations over the disorder, i.e. the different
graphs (quenched average). From an analytical point of
view, fixed connectivity graphs provide a simple testing-
ground, since using the methods of [33,34] one finds that
for sufficiently high energies the annealed average of the
number of blocked configurations gives the same result as
the quenched average.

The number of blocked configurations N (e) at a given
energy density e may be written easily as

N (e) =
∏
l

[ ∑
sl=±1

∞∑
hl=−∞

δ

(
hl −

1
2

∑
m,n

Clmnsmsn

)

×Θ (hlsl)

]
δ

(
e− 1

3N

∑
l

hlsl

)
, (12)

where δ(x), denotes a Kronecker-delta Θ(x) denotes a
Heaviside step-function with Θ(x) = 1 if x ≥ 0 and 0 oth-
erwise, and ex denotes the standard exponential function.
After using integral representations for the Kronecker-
deltas and standard manipulations [35], one obtains the
entropy of blocked states in the annealed approximation

s(e) =
1
N

ln〈〈N (e)〉〉 =

extra,b,β

[
βe− 8

3
(a3 + b3) +

2
3
k(1− ln k)

+ ln

(2ab)k
′k∑

h=0(1)

(
eβ/3

a

b

)h(( k
k−h

2

)
+
(

k
k+h

2

))],
(13)
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Fig. 5. Asymptotic results for connectivity k = 5 and thermal
tapping with T = 0.5, 2, 2.86, 5 (from left to right). The solid
lines give the corresponding fractions of sites with hi = 1, 3, 5
according to the flat measure (bottom to top on the lhs).

where the angular brackets denote the average over graphs
of fixed connectivity k and a, b, β are to be determined
by extremising this expression with respect to these three
parameters. The sum over h proceeds in steps of two, as
for even k thus only even local fields are possible, and
likewise for odd values of k.

Having solved the self-consistent equations for the
three parameters, one may also determine the fraction of
sites gh with a given value of the local field h (even h for
even k and odd h for odd k)

gh =
(eβ/3a/b)|h|

(
k
k−h

2

)
[1 + δ(h)]∑′k

h=0(1)

(
eβ/3a/b

)h [( k
k−h

2

)
+
(
k
k+h

2

)] · (14)

For k > 3 the fraction of sites with a certain local field
serves as a convenient test of the Edwards hypothesis by
comparing the values of gh reached asymptotically with
those predicted by the flat measure over all blocked con-
figurations at the asymptotic energy. (For k = 3 and for a
symmetric distribution of the local fields, the fraction of
sites with h = 1 versus those of h = 3 is a unique function
of the energy in all configurations.)

In the following we compare the results of thermal and
of random tapping for k = 5 and k = 6. We use sys-
tem sizes of N = 104. An asymptotic state was typically
reached after 106 taps in all but the lowest intensities,
where up to 3× 106 taps were necessary. Since graphs of
fixed connectivity are highly homogeneous no sample av-
eraging was necessary. In Figures 5 and 6 the asymptotic
results averaged over 1000 steps with the errorbars giving
the standard deviation of the energy and the fraction of
sites with a given local field also measured over 1000 steps.
We plot the fraction of sites of a given local field against
the asymptotic energy and compare the results with the
prediction of (14).

As expected there are discrepancies between the nu-
merical results of the tapping dynamics and the analyti-
cal results for the flat measure at high amplitudes of both
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Fig. 6. Asymptotic results for connectivity k = 5 and random
tapping with pN = 300, 500, 1000, 2000 (lower tapping am-
plitudes did not yield substantially lower energies). The solid
lines give the corresponding fractions of sites with hi = 1, 3, 5
according to the flat measure (bottom to top on the lhs).

thermal and random tapping. However also at low ampli-
tudes small discrepancies are found. These are probably
due to a dynamical slowing down and diverging equilibra-
tion times at low temperatures.

The situation is however more drastic in the case of
k = 6, shown in Figures 7 and 8 where both for thermal
and for random tapping respectively the flat measure does
not agree with the numerical results at any tapping am-
plitude.

This effect is due to a simple but crucial difference
between graphs of odd and even constant connectivity:
Graphs with even connectivity qualitatively differ from
those with odd connectivity since in the former case sites
may have their local magnetic field equal to zero so their
spins may be free to flip without changing the energy. The
dynamics of these spins is crucial at low temperatures as
they correspond to neutral directions in phase space [36].

In odd-connectivity graphs such neutral directions are
absent, whereas in generic graphs with fluctuating connec-
tivity as considered in [15] they are also present.

The spins with zero magnetic field may be thought of
as being exposed to a continuous tapping process even
during the quench phase. The idea that this process dis-
torts the flat measure may be used to promote the frac-
tion of spins with zero local field to a relevant macroscopic
variable, like the energy. In fact, a better comparison with
the dynamics is obtained considering the ensemble of all
blocked configurations of a given energy and of a given
fraction g0 of sites with zero local field. The calculation is
a simple variation on (13) and yields

gh =
(eβ/3a/b)|h|

(
k
k−h

2

)
[1 + δ(h)] e−ĝ0δh,0∑′k

h=0(1) e−ĝ0δh,0
(
eβ/3a/b

)h [( k
k−h

2

)
+
(
k
k+h

2

)] ·
(15)
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Fig. 7. Asymptotic results for connectivity k = 6 and thermal tapping with T = 2, 2.86, 5 (from left to right, lower amplitudes
did not yield substantially lower energies), plotting the fractions of sites with hi = 0, 2, 4, 6 (bottom to top on the lhs) against
the energy. In the left graph, the solid lines give the corresponding analytic result according to the uniform measure. In the
graph on the right hand side, the same numerical results are plotted and compared to the restricted measure plotted as solid
lines.
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Fig. 8. Asymptotic results for connectivity k = 6 and random tapping with pN = 300, 500, 1000, 2000 (lower tapping amplitudes
did not yield substantially lower energies), again plotting the fractions of sites with hi = 0, 2, 4, 6 (bottom to top on the lhs)
against the energy. In the left graph, the solid lines give the corresponding analytic result according to the uniform measure. In
the graph on the right hand side, the same results numerical results are plotted and compared to the restricted measure plotted
as solid lines.

where the order parameters are determined by the ex-
tremal condition in

s(e) = extra,b,ĝ0,β

[
ĝ0g0 + βe− 8

3
(a3 + b3)

+
2
3
k(1− ln k) + ln

(
(2ab)k

′k∑
h=0(1)

e−ĝ0δh,0
(

eβ/3
a

b

)h
×
((

k
k−h

2

)
+
(

k
k+h

2

)))]
· (16)

To test this new ensemble we compare the values of
g2, g4, g6 at the asymptotic state with those given analyt-
ically by the restricted ensemble at the asymptotic values
both of the energy and of g0. The results are shown in
Figures 7 and 8. Except at high amplitudes, the numer-
ical and analytical results agree very well. Clearly more
information on the blocked states is used in the restricted

measure, so some improvement of the fit between ana-
lytical and numerical results is expected solely on these
grounds. Similarly the agreement in the case of the frac-
tion of sites with zero local field g0 is solely due to the
fitting. Nevertheless the fact that the flat measure fails in
the case of even-connectivity graphs shows the crucial role
of sites with zero magnetic field. The restricted measure
is the simplest way of modifying the flat measure in this
case.

Of course the relevance of such neutral moves to realis-
tic models of e.g. of granular is debatable, however loosely
constrained particles termed “rattlers” have been found to
cause subtle dynamical effects in simulations of granular
particles [37].

4 Summary and conclusions

In this paper we have studied stationary dynamical mea-
sures of several abstract spin models endowed with two
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kinds of energy injection mechanism: random and thermal
tapping. We first considered two kinetically constrained
Ising chains (with symmetric and asymmetric constraints)
having the same entropy of blocked states. We find that,
in the case of the thermal tapping, the Edwards measure
gives a good approximation for the observables we stud-
ied, independently of the kinetic constraints. This can
be understood as the uniform measure implies uncorre-
lated domains of up spins, and the dynamics does not
create spatial long range correlations. Despite that, small
correlations are always dynamically induced and system-
atic deviations are found. As one could expect, the qual-
ity of the approximation improves as one goes towards
lower tapping amplitudes and lower energies. Deviations
are particularly evident in the case of random tapping
showing that the energy injection mechanism may have
a strong influence on the nature of the asymptotic sta-
tionary regime. We interpret these deviations as essen-
tially due to the vanishing compactivity of blocked config-
urations reached by random tapping. We finally observed
that non-ergodic sampling occurs during the aging as the
purely relaxational dynamics of these Ising chains is a do-
main growth process. Nevertheless, this does not prevent
the Edwards measure to be a good approximation for the
steady state of the thermal tapping. This suggests that
ergodicity in the stationary regime generally requires less
stringent conditions than the aging dynamics.

Similar results are obtained in the case of the 3-spin
model on the random hypergraph, where the Edwards
measure gives a reasonable approximation both for ther-
mal and for random tapping provided there are no neutral
directions in phase space. In the latter case, realized by
sites with zero local field, we introduced a restricted mea-
sure of blocked configurations with a given fraction of sites
with zero local fields.

It is an open problem if there are systems where the
uniform measure on blocked states is exact for tapping
dynamics. In this paper we showed that at least for ther-
mal tapping, where the energy injection step is correlated
with the energy landscape, the Edwards hypothesis is a
good approximation whose quality increases with decreas-
ing tapping amplitude.

S.F. acknowledges interesting discussions with A. Barrat and
J.M. Luck. We thank G. De Smedt, C. Godreche and J.M.
Luck for communicating us their results before publication.
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